ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Yeni Li, Hany S. Abdel-Khalik, Acacia J. Brunett, Elise Jennings, Travis Mui, Rui Hu
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 520-537
Technical Paper | doi.org/10.1080/00295639.2020.1840238
Articles are hosted by Taylor and Francis Online.
The System Analysis Module (SAM), developed and maintained by Argonne National Laboratory, is designed to provide whole-plant transient safety analysis capabilities for a number of advanced non–light water reactors, including sodium-cooled fast reactor (SFR), lead-cooled fast reactor (LFR), and molten salt reactor (MSR)/fluoride-salt-cooled high-temperature reactor (FHR) designs. SAM is primarily constructed as a systems-level analysis tool, with the potential to incorporate reduced order models from three-dimensional computational fluid dynamics (CFD) simulations to improve characterization of complex, multidimensional physics. It is recognized that the computational expense associated with CFD can be intractable for various engineering analyses, such as uncertainty quantification, inference, and design optimization. This paper explores the reducibility of a SAM model using recent advances in randomized linear algebra techniques, which attempt to find recurring patterns in the various realizations generated by a model after randomly perturbing all its input parameters. The reduction is described in terms of fewer degrees of freedom (DOFs), referred to as the active DOFs, for the model variables such as input model parameters and model responses. The results indicate that there is significant room for additional reduction that may be leveraged for additional computational gains when employing SAM for engineering-intensive analyses that require repeated model executions. Different from physics-based reduction approaches, the proposed approach allows one to estimate upper bounds on the reduction errors, which are rigorously developed in this work. Finally, different methods for surrogate model construction, such as regression and neural network–based training, are employed to correlate the input and output active DOFs, which are related back to the original variables using matrix-based linear transformations.