ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Meta’s new nuclear deals with Oklo and TerraPower: The details
Tech giant Meta is making big bets on TerraPower and Oklo. With the former, the hyperscaler could support the deployment of up to eight new reactors. With the latter, it could be as many as sixteen.
For both start-ups, Meta hopes its demand bolsters supply chains, the workforce, and the nuclear industry generally. For itself, the company is aiming to secure more generation to cleanly power its AI ambitions.
Kodai Fukuda, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 453-463
Technical Paper | doi.org/10.1080/00295639.2020.1847979
Articles are hosted by Taylor and Francis Online.
To proceed with the decommissioning of the Fukushima Daiichi Nuclear Power Station, analyses of unexpected fuel debris criticality accidents are needed. Supercritical transient analyses have been conducted for fuel debris using the Multiregion Integral Kinetic (MIK) code, which can take the space dependence of fuel debris into account. In those analyses, reactivity is assumed as stepwise insertion because the MIK code does not include delayed neutron effects, which might be negligible. However, reactivity insertion may not always be stepwise. Therefore, it is important to clarify an applicable range of the MIK code for nonstepwise insertion, such as ramp reactivity insertion. To show that kinetics codes without delayed neutron effects could be applied for a supercritical transient induced by ramp reactivity insertion, we established a method to clarify its applicable range. An analysis using the point reactor kinetics model was introduced as a pre-analysis to clarify this range in the case of ramp reactivity insertion in terms of the contribution of delayed neutrons. We applied the methodology to a simple cylindrical fuel debris system and successfully demonstrated a supercritical transient analysis for ramp reactivity insertion using the MIK code.