ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Denver Airport may go nuclear
Colorado’s first nuclear power plant of the 21st century could be built at an unconventional site: the Denver International Airport (DEN).
In its mission to gain energy independence and become the greenest airport in the world, DEN has announced that it will conduct a feasibility study to determine the viability of building a small modular reactor on its 33,500-acre campus.
Kodai Fukuda, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 195 | Number 5 | May 2021 | Pages 453-463
Technical Paper | doi.org/10.1080/00295639.2020.1847979
Articles are hosted by Taylor and Francis Online.
To proceed with the decommissioning of the Fukushima Daiichi Nuclear Power Station, analyses of unexpected fuel debris criticality accidents are needed. Supercritical transient analyses have been conducted for fuel debris using the Multiregion Integral Kinetic (MIK) code, which can take the space dependence of fuel debris into account. In those analyses, reactivity is assumed as stepwise insertion because the MIK code does not include delayed neutron effects, which might be negligible. However, reactivity insertion may not always be stepwise. Therefore, it is important to clarify an applicable range of the MIK code for nonstepwise insertion, such as ramp reactivity insertion. To show that kinetics codes without delayed neutron effects could be applied for a supercritical transient induced by ramp reactivity insertion, we established a method to clarify its applicable range. An analysis using the point reactor kinetics model was introduced as a pre-analysis to clarify this range in the case of ramp reactivity insertion in terms of the contribution of delayed neutrons. We applied the methodology to a simple cylindrical fuel debris system and successfully demonstrated a supercritical transient analysis for ramp reactivity insertion using the MIK code.