ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Tomohiro Endo, Akio Yamamoto
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1089-1104
Technical Paper | doi.org/10.1080/00295639.2020.1720499
Articles are hosted by Taylor and Francis Online.
The prompt neutron decay constant in a steady-state subcritical system can be directly measured using a reactor noise analysis method such as the Feynman- method. To reduce the nuclear data–induced uncertainty of for a target system, this study investigates the applicability of data assimilation techniques, i.e., the bias factor method and the cross-section adjustment method, based on a subcritical measurement of conducted at Kyoto University Critical Assembly (KUCA). The sensitivity coefficients of and with respect to the nuclear data were efficiently estimated using a deterministic SN transport code with first-order perturbation theory. As a result, the a priori relative uncertainty of due to the 56-group SCALE covariance data can be reduced if there is strong correlation between the measured and the target . The experimental value of contributes to improving the nuclear data of total fission spectrum and total fission neutron number via strong correlations between and prompt and between and prompt , by utilizing the sensitivity coefficients of with respect to prompt and .