ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Chris Keckler, Massimiliano Fratoni, Ehud Greenspan
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1079-1088
Technical Paper | doi.org/10.1080/00295639.2020.1715688
Articles are hosted by Taylor and Francis Online.
This study quantifies the uncertainty in the calculated displacements per atom (DPA) value due to uncertainties in the neutron spectrum resulting from cross-section data uncertainty. Using generalized perturbation theory, covariance matrices, and fine-group DPA cross sections, a method for propagating nuclear data uncertainties through to the calculation of DPA is outlined. This method is then implemented for the case of a typical sodium-cooled breed-and-burn core. The majority of uncertainties in accumulated DPA were found to come from the inelastic scattering cross section for 238U. Overall the uncertainty in accumulated DPA is found to be roughly 2% of the total value.