ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Project Pele progress: BWXT delivers fuel to INL
This week, BWX Technologies, alongside Idaho National Laboratory and the Department of Defense’s Strategic Capabilities Office, announced the arrival of a full core of TRISO fuel at INL’s Transient Reactor Test Facility.
A. Vidal-Ferràndiz, A. Carreño, D. Ginestar, C. Demazière, G. Verdú
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1067-1078
Technical Paper | doi.org/10.1080/00295639.2020.1756617
Articles are hosted by Taylor and Francis Online.
The mechanical vibrations of core internals such as fuel assemblies (FAs) cause oscillations in the neutron flux that require in some circumstances nuclear power plants to operate at a reduced power level. This work simulates and analyzes the changes of the neutron flux throughout a nuclear core due to the oscillation of a single FA without considering thermal-hydraulic feedback. The amplitude of the FA vibration is bounded to a few millimeters, and this implies the use of fine meshes and accurate numerical solvers due to the different scales of the problem. The results of the simulations show a main oscillation of the neutron flux with the same frequency as the FA vibration along with other harmonics at multiples of the vibration frequency much smaller in amplitude. Also, this work compares time domain analysis and frequency domain analysis of the mechanical vibrations. Numerical results show a close match between these two approaches for the fundamental frequency.