ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Ilham Variansyah, Benjamin R. Betzler, William R. Martin
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 1025-1043
Technical Paper | doi.org/10.1080/00295639.2020.1743578
Articles are hosted by Taylor and Francis Online.
Multigroup constants for deterministic methods that preserve the time-dependent physics of the neutron transport equations are derived. Alternative multigroup constant weighting spectra are discussed: (1) the fundamental k-eigenfunction, (2) the fundamental α-eigenfunction, and (3) a composite of several α-modes. To generate the fundamental α-eigenfunction for calculating the multigroup constants, a static fundamental α-eigenvalue method is implemented into the open source Monte Carlo code OpenMC. Several static and kinetic problems are devised to verify the implementations and to investigate the relative performance of the alternative multigroup constant weighting spectra. Results emphasize that as a multigroup constant weighting spectrum, the fundamental α-eigenfunction offers physical characteristics that make it advantageous (in producing accurate solutions) over the typically used fundamental k-eigenfunction.