ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
H. Park
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 952-970
Technical Paper | doi.org/10.1080/00295639.2020.1769390
Articles are hosted by Taylor and Francis Online.
Recent development of the high-order, low-order (HOLO) method has shown promising results for solving thermal radiative transfer problems. The HOLO algorithm is a moment-based acceleration, similar to the well-known nonlinear diffusion acceleration and coarse-mesh finite difference methods. In this work, we introduce a new spatial-differencing scheme for the low-order (LO) system based on the corner-balance method and analyze an asymptotic diffusion property for a one-dimensional gray equation. An asymptotic analysis indicates that the new spatial-differencing scheme possesses the equilibrium diffusion limit. Numerical examples demonstrate significant improvements in the solution accuracy compared to the LO finite-volume discretization with a discontinuous source reconstruction.