ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
H. Park
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 952-970
Technical Paper | doi.org/10.1080/00295639.2020.1769390
Articles are hosted by Taylor and Francis Online.
Recent development of the high-order, low-order (HOLO) method has shown promising results for solving thermal radiative transfer problems. The HOLO algorithm is a moment-based acceleration, similar to the well-known nonlinear diffusion acceleration and coarse-mesh finite difference methods. In this work, we introduce a new spatial-differencing scheme for the low-order (LO) system based on the corner-balance method and analyze an asymptotic diffusion property for a one-dimensional gray equation. An asymptotic analysis indicates that the new spatial-differencing scheme possesses the equilibrium diffusion limit. Numerical examples demonstrate significant improvements in the solution accuracy compared to the LO finite-volume discretization with a discontinuous source reconstruction.