ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
H. Park
Nuclear Science and Engineering | Volume 194 | Number 11 | November 2020 | Pages 952-970
Technical Paper | doi.org/10.1080/00295639.2020.1769390
Articles are hosted by Taylor and Francis Online.
Recent development of the high-order, low-order (HOLO) method has shown promising results for solving thermal radiative transfer problems. The HOLO algorithm is a moment-based acceleration, similar to the well-known nonlinear diffusion acceleration and coarse-mesh finite difference methods. In this work, we introduce a new spatial-differencing scheme for the low-order (LO) system based on the corner-balance method and analyze an asymptotic diffusion property for a one-dimensional gray equation. An asymptotic analysis indicates that the new spatial-differencing scheme possesses the equilibrium diffusion limit. Numerical examples demonstrate significant improvements in the solution accuracy compared to the LO finite-volume discretization with a discontinuous source reconstruction.