ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Carolyn Coyle, Emilio Baglietto, Charles Forsberg
Nuclear Science and Engineering | Volume 194 | Number 8 | August-September 2020 | Pages 782-792
Technical Paper | doi.org/10.1080/00295639.2020.1723993
Articles are hosted by Taylor and Francis Online.
Liquid salts have become more attractive as coolants for low-carbon power generation due to needs for high-temperature heat and affordable energy storage. Of particular interest are halide salts utilized in fluoride-salt-cooled high-temperature reactors, molten salt reactors, and high-magnetic-field fusion machines, as well as in concentrated solar power systems. Because of their high-temperature operation and semitransparent nature, the liquid salts in these designs may experience the effects of participating media radiative heat transfer (RHT). While some work has been conducted on measuring the thermophysical properties of these fluids, there is currently very little known about their radiative properties.
Here, we present the initial results of a two-part methodology to enhance RHT understanding and improve modeling in high-temperature liquid salts. First, an experimental apparatus designed to measure liquid chloride and fluoride salt absorption coefficients by Fourier transform infrared spectroscopy was completed and validated with water measurements. Second, computational fluid dynamics (CFD) simulations were run to determine the contribution of thermal radiation to the overall heat transfer for flow between parallel plates. This geometry was used to verify code accuracy and investigate requirements for absorption coefficient spectral banding. Future work will be to complete halide salt absorption measurements and couple them to the established CFD methods to identify geometries and temperatures where RHT is significant and enable prediction of heat transfer in such systems.