ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
K. Rady, A. A. Abouelsoud, S. A. Kotb, M. M. El Metwally
Nuclear Science and Engineering | Volume 194 | Number 7 | July 2020 | Pages 572-582
Technical Paper | doi.org/10.1080/00295639.2020.1755808
Articles are hosted by Taylor and Francis Online.
This paper discusses modeling of the performance of a VVER-type nuclear power plant using the Fractional Neutron Point Kinetics (FNPK) model. The modeling intent is to achieve a nonlinear system of fractional-order differential equations that are solved using SIMULINK by developing a scheme with the FOMCON Toolbox in the Matlab® environment. The model is shown to be identifiable, and the goodness of fit between the measurements and the model’s output is improved as a result of employing the optimized fractional differential equation. Benchmarking the results of the FNPK model against those from the optimized Classical Neutron Point Kinetics model shows that the FNPK model is superior.