ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Jiashuang Wan, Pengfei Wang
Nuclear Science and Engineering | Volume 194 | Number 6 | June 2020 | Pages 433-446
Technical Paper | doi.org/10.1080/00295639.2019.1710419
Articles are hosted by Taylor and Francis Online.
The task of this investigation is to design a controller that has a strong robustness in various operating conditions. A new structure of state feedback assisted classical control (SFACC) that uses a differential lag compensator in the inner classical control loop is proposed to improve the robustness of original SFACC. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) at the plant output is employed to design the robust controller in the outer control loop. A comparison of the performance and robustness between the gain-insensitive controller and an existing LQG/LTR controller is made by nonlinear simulations. The proposed gain-insensitive LQG/LTR controller can give satisfying performance for both reactor power and coolant temperature over a wide range of reactor operations.