ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Luke J. Kersting, Alex Robinson, Eli Moll, Philip Britt, Lewis Gross, Douglass Henderson
Nuclear Science and Engineering | Volume 194 | Number 5 | May 2020 | Pages 350-372
Technical Paper | doi.org/10.1080/00295639.2019.1701344
Articles are hosted by Taylor and Francis Online.
A new single scattering adjoint transport capability was implemented in Framework for REsearch in Nuclear ScIence and Engineering (FRENSIE). The Evaluated Electron Data Library (EEDL) was used to generate new tabulated adjoint data. All adjoint data were generated using refined EEDL data and a unit-base grid policy. Verification and validation tests were performed for the adjoint electron transport in FRENSIE. Adjoint simulation results were compared with forward simulation results for a self-adjoint infinite medium problem as well as experimental results for electron low-energy backscattering coefficients. Only a refined unit-base grid policy and coupled elastic scattering were tested for adjoint tests. The adjoint transport capability shows good agreement with the forward transport capability. The adjoint atomic excitation physics were unable to model a discrete forward source. For the self-adjoint infinite medium problems, the adjoint results matched the forward results to within 2% except near the cutoff energy. For backscattering coefficients, the adjoint results matched the forward results to within 5% for all converged bins. Overall, the adjoint transport capability was in good agreement with the forward transport capability validating the adjoint transport scheme.