ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Rei Kimura, Kazuhito Asano
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 213-220
Technical Paper | doi.org/10.1080/00295639.2019.1685352
Articles are hosted by Taylor and Francis Online.
Nuclear energy has been one of the sustainable energy sources, but after the Fukushima Daiichi nuclear accident, large-scale light water reactors are losing price competitiveness due to the rising costs to meet elevated safety standards. On the other hand, small modular reactors (SMRs) have been developed by various teams and are expected to provide not only electricity but also heat for small communities, chemical plants, factories, mines, and hydrogen production. Since 2017, a multipurpose very small modular reactor (vSMR), namely, Mobile-Very-small reactor for Local Utility in X-mark (MoveluXTM), has been studied at Toshiba Energy Systems and Solutions Corporation as a feasible distributed energy source. The main concept to MoveluX is a heat pipe–cooled calcium hydride–moderated core to simplify the reactor system while increasing inherent safety and nuclear security. Portable vSMRs are useful for remote places; therefore, criticality safety during their transport is essential for vSMRs to gain popularity. In a previous paper, we discuss positive temperature reactivity coefficients of the hydride-moderated core and its control method. The phenomenon is caused by thermal-neutron spectrum shifts at increased temperatures. In the current paper, we show that a positive temperature reactivity coefficient can be utilized to maintain subcriticality during transport. The reactor core requires preheating to achieve criticality, which means the core does not become critical even though safety rods have been extracted in the low-temperature range. The positive reactivity in the low-temperature range establishes inherent criticality safety during transport of the reactor system.