ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Rei Kimura, Kazuhito Asano
Nuclear Science and Engineering | Volume 194 | Number 3 | March 2020 | Pages 213-220
Technical Paper | doi.org/10.1080/00295639.2019.1685352
Articles are hosted by Taylor and Francis Online.
Nuclear energy has been one of the sustainable energy sources, but after the Fukushima Daiichi nuclear accident, large-scale light water reactors are losing price competitiveness due to the rising costs to meet elevated safety standards. On the other hand, small modular reactors (SMRs) have been developed by various teams and are expected to provide not only electricity but also heat for small communities, chemical plants, factories, mines, and hydrogen production. Since 2017, a multipurpose very small modular reactor (vSMR), namely, Mobile-Very-small reactor for Local Utility in X-mark (MoveluXTM), has been studied at Toshiba Energy Systems and Solutions Corporation as a feasible distributed energy source. The main concept to MoveluX is a heat pipe–cooled calcium hydride–moderated core to simplify the reactor system while increasing inherent safety and nuclear security. Portable vSMRs are useful for remote places; therefore, criticality safety during their transport is essential for vSMRs to gain popularity. In a previous paper, we discuss positive temperature reactivity coefficients of the hydride-moderated core and its control method. The phenomenon is caused by thermal-neutron spectrum shifts at increased temperatures. In the current paper, we show that a positive temperature reactivity coefficient can be utilized to maintain subcriticality during transport. The reactor core requires preheating to achieve criticality, which means the core does not become critical even though safety rods have been extracted in the low-temperature range. The positive reactivity in the low-temperature range establishes inherent criticality safety during transport of the reactor system.