ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Mohammad Alrwashdeh, Saeed A. Alameri, Ahmed K. Alkaabi
Nuclear Science and Engineering | Volume 194 | Number 2 | February 2020 | Pages 163-167
Technical Paper | doi.org/10.1080/00295639.2019.1672511
Articles are hosted by Taylor and Francis Online.
The double heterogeneity of the tristructural isotropic (TRISO) fuel in the prismatic-core advanced high-temperature reactor should be accurately and correctly modeled and analyzed, especially for a large-scale loaded with the double-heterogeneity effect. The reactivity-equivalent physical transformation method was developed and employed to enable homogenizing TRISO fuel in a high temperature reactor considering the double heterogeneity and taking into account the large problem involved in performing the whole-core burnup calculation using Monte Carlo transport codes with double-heterogeneity problems. In this work, the heterogeneous effects of a collision of probability calculation method were used to represent the effects of scattering anisotropy on the leakage rates and the isotropic streaming effects due to low optical density in the model. The WIMS and DRAGON codes have been used to perform the calculations of double heterogeneity for the TRISO fuel, fuel compact, and fuel element and the results are compared with the SERPENT Monte Carlo code.