ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Michael Jarrett, Brendan Kochunas, Edward Larsen, Thomas Downar
Nuclear Science and Engineering | Volume 193 | Number 12 | December 2019 | Pages 1291-1309
Technical Paper | doi.org/10.1080/00295639.2019.1627176
Articles are hosted by Taylor and Francis Online.
A new method for calculating anisotropic radial transverse leakage (TL) in a two-dimensional (2D)/one-dimensional (1D) transport method is derived and implemented in MPACT. This method makes use of parity in the polar angle only to form the 2D transport equations for the 2D/1D method. The even-parity component is solved on a fine mesh using the method of characteristics (MOC), while the odd-parity component is solved on a coarse mesh using S. The anisotropic radial TL on the coarse cell boundaries is calculated by combining the even- and odd-parity components. The new method is faster than a similar previous method because it delegates half of the work required to calculate the solution of the 2D transport problem to a coarse-mesh S solver, which is more than ten times faster than the fine-mesh MOC solver. The results show that the accuracy of the new method is equivalent to that of the previously implemented method for anisotropic TL, with a significant speedup. With azimuthally isotropic TL, the new method reduces the computational overhead compared to the standard method from 58% to 5% for the three-dimensional (3D) C5G7 benchmark problems. With azimuthally anisotrop\ic TL using Fourier expansion, the new method reduces the overhead from 84% to 37%. This is important because the accuracy of the 2D/1D method is limited by the isotropic TL approximation. With anisotropic TL, the accuracy of 2D/1D is equivalent or comparable to 3D transport, but there is a significant computational cost associated with calculating the anisotropic TL. The method presented provides a faster way to calculate the anisotropic TL, giving the 2D/1D method significantly increased accuracy with only a modest increase in computational requirements compared to isotropic 2D/1D.