ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
X-energy begins irradiation testing at INL
Advanced reactor and fuel developer X-energy has officially begun confirmatory irradiation testing at Idaho National Laboratory on its TRISO-X fuel. The testing, which is taking place over the course of the next 13 months, will evaluate the fuel across a variety of operating scenarios and—if all goes according to plan—will be instrumental in qualifying it for commercial use.
M. Nowak, D. Mancusi, D. Sciannandrone, E. Masiello, H. Louvin, E. Dumonteil
Nuclear Science and Engineering | Volume 193 | Number 9 | September 2019 | Pages 966-981
Technical Paper | doi.org/10.1080/00295639.2019.1578568
Articles are hosted by Taylor and Francis Online.
In radiation protection studies, the goal is to estimate the response of a detector exposed to a strongly attenuated radiation field. Monte Carlo (MC) particle transport codes give the possibility to efficiently solve for such responses using several variance-reduction (VR) methods that help allocating more CPU time to the simulation of highly contributing histories. The TRIPOLI-4® MC particle transport code offers two main methods, the exponential transform and adaptive multilevel splitting (AMS), which rely on the definition of a suitable importance map. In this paper, we present an implementation of a generalized Consistent Adjoint Driven Importance Sampling (CADIS) methodology for TRIPOLI-4. The implementation relies on coupling with the IDT code, a deterministic solver for the Boltzmann adjoint transport equation, for the generation of importance maps. We study the performance of both VR methods present in TRIPOLI-4 in this setting. In particular, to our knowledge, this is the first time that a CADIS-like methodology has been applied to AMS.