ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Luke R. Cornejo, Dmitriy Y. Anistratov, Kord Smith
Nuclear Science and Engineering | Volume 193 | Number 8 | August 2019 | Pages 803-827
Technical Paper | doi.org/10.1080/00295639.2019.1573601
Articles are hosted by Taylor and Francis Online.
In this paper we present nonlinear multilevel methods with multiple grids in energy for solving the k-eigenvalue problem for multigroup neutron diffusion equations. We develop multigrid-in-energy algorithms based on a nonlinear projection operator and several advanced prolongation operators. The evaluation of the eigenvalue is performed in the space with smallest dimensionality by solving the effective one-group diffusion problem. We consider two-dimensional Cartesian geometry. The multilevel methods are formulated in discrete form for the second-order finite volume discretization of the diffusion equation. The homogenization in energy is based on a spatially consistent discretization of the group diffusion equations on coarse grids in energy. We present numerical results of model reactor-physics problems with 44 energy groups. They demonstrate performance and main properties of the proposed iterative methods with multigrid in energy.