ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Luke J. Kersting, Douglass Henderson, Alex Robinson, Eli Moll
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 346-367
Technical Paper | doi.org/10.1080/00295639.2018.1525976
Articles are hosted by Taylor and Francis Online.
Verification and validation tests have been performed for the single scattering Evaluated Electron Data Library (EEDL) implemented in the Framework for Research in Nuclear ScIence and Engineering (FRENSIE). Tests compared simulation results with experimental results for electron multiple scattering and low-energy backscattering coefficients as well as simulation results from MCNP6.2. Several bivariate grid policies (unit base, correlated, and unit base correlated) and elastic scattering implementations (coupled versus decoupled) were tested. FRENSIE showed good agreement with MCNP6.2 when using the same grid policy and elastic implementation. Logarithmic-logarithmic grid policies were found to best match experimental results. For multiple scattering, an increase in accuracy was seen when using coupled elastic scattering. When using correlated or unit-base-correlated grid policies, computational results matched the experimental measurements of Hanson et al. [Phys. Rev., Vol. 84, p. 634,(1951)] for the peak amplitude of the angular distribution to within 7% and for to within , but the unit-base grid policy showed error up to 38% and 24%, respectively. For backscattering coefficients, all results below 1 keV showed large error caused by insufficiencies in the data at that energy range. The correlated and unit-base-correlated grid policies overestimated the backscattering coefficient experimental results above 1 keV, but the unit-base grid policy was in the range of the measured experimental backscattering coefficients.