ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Luke J. Kersting, Douglass Henderson, Alex Robinson, Eli Moll
Nuclear Science and Engineering | Volume 193 | Number 4 | April 2019 | Pages 346-367
Technical Paper | doi.org/10.1080/00295639.2018.1525976
Articles are hosted by Taylor and Francis Online.
Verification and validation tests have been performed for the single scattering Evaluated Electron Data Library (EEDL) implemented in the Framework for Research in Nuclear ScIence and Engineering (FRENSIE). Tests compared simulation results with experimental results for electron multiple scattering and low-energy backscattering coefficients as well as simulation results from MCNP6.2. Several bivariate grid policies (unit base, correlated, and unit base correlated) and elastic scattering implementations (coupled versus decoupled) were tested. FRENSIE showed good agreement with MCNP6.2 when using the same grid policy and elastic implementation. Logarithmic-logarithmic grid policies were found to best match experimental results. For multiple scattering, an increase in accuracy was seen when using coupled elastic scattering. When using correlated or unit-base-correlated grid policies, computational results matched the experimental measurements of Hanson et al. [Phys. Rev., Vol. 84, p. 634,(1951)] for the peak amplitude of the angular distribution to within 7% and for to within , but the unit-base grid policy showed error up to 38% and 24%, respectively. For backscattering coefficients, all results below 1 keV showed large error caused by insufficiencies in the data at that energy range. The correlated and unit-base-correlated grid policies overestimated the backscattering coefficient experimental results above 1 keV, but the unit-base grid policy was in the range of the measured experimental backscattering coefficients.