ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Matthew Boraas, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 193 | Number 3 | March 2019 | Pages 211-232
Technical Paper | doi.org/10.1080/00295639.2018.1516953
Articles are hosted by Taylor and Francis Online.
While many issues affect the composition and quantity of the nuclear source term, one significant factor is the existence of aerosols. These aerosols, found in the containment structure and in the primary reactor vessel, are usually simulated with the assumption that they are spatially homogeneous. We describe here new investigations of the applications of the Direct Simulation Monte Carlo method and a mesh-free technique to spatially inhomogeneous aerosol evolution in a number of nonspherical and complex geometries. Deposition, coagulation, and condensation aerosol processes are included, and results are reported for a sphere, ellipsoid, torus, elliptical cylinder, cuboid, and a spherical geometry containing an internal obstruction. Our progress here is a precursor to construction of an MCNP-like code for simulating aerosol evolution.