ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
S. Kelm, H. Müller, H.-J. Allelein
Nuclear Science and Engineering | Volume 193 | Number 1 | January-February 2019 | Pages 63-80
Technical Paper – Selected papers from NURETH 2017 | doi.org/10.1080/00295639.2018.1503858
Articles are hosted by Taylor and Francis Online.
The Organisation for Economic Co-operation and Development (OECD)/Nuclear Energy Agency International Standard Problem 47 (ISP-47) was aimed at assessing the predictive capabilities of computational fluid dynamics (CFD) and lumped-parameter codes regarding hydrogen mixing under representative thermal-hydraulic conditions of a loss-of-coolant-accident. The benchmark consisted of two systematic steps. The first step was a fundamental model assessment based on quasi-steady-state separate-effects tests in the French TOSQAN facility (7 m3, IRSN, Saclay) and MISTRA facility (100 m3, CEA, Saclay) regarding steam condensation, buoyant turbulent flows, and mixed atmospheric conditions. The second step was based on a more realistic experimental transient in the multicompartmented German Thermal-hydraulics, Hydrogen, Aerosols and Iodine (THAI) facility (60 m3, Becker Technologies, Eschborn). At that time, the blind and open analysis revealed that CFD codes needed further improvement regarding modeling of turbulence in buoyant flows, steam condensation, temperature and species concentration, and stratification buildup as well as their dissolution. This result triggered a comprehensive experimental and analytical effort, e.g., within the German national THAI, the OECD-THAI, and the OECD-SETH-1 and OECD-SETH-2 projects. Now, 10 years later, this paper aims to benchmark the state-of-the-art containment CFD model, developed at Forschungszentrum Juelich and RWTH Aachen University, and to highlight the progress made and the remaining open issues.