ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Hyeon Tae Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 191 | Number 2 | August 2018 | Pages 136-149
Technical Paper | doi.org/10.1080/00295639.2018.1463747
Articles are hosted by Taylor and Francis Online.
Application of partial current–based coarse-mesh finite difference (pCMFD) acceleration to a one-node scheme is devised for stability enhancement of the parallel neutron transport calculation algorithm. Conventional one-node coarse-mesh finite difference (CMFD) allows parallel algorithms to be more tractable than two-node CMFD, but it has an inherent stability issue for some problems. In order to overcome this issue, pCMFD is modified to be fitted into the one-node scheme and is tested for both sequential and parallel calculations. The superior stability of the one-node pCMFD is shown by comparing results from analytic and numerical approaches. To investigate the convergence behavior of the acceleration methods in an analytic way, Fourier analysis is applied to an infinite homogeneous slab reactor configuration with the monoenergetic neutron flux assumption, and the spectral radius is calculated as a convergence factor. This paper carefully describes the process of the Fourier analysis on the parallel algorithm for neutron transport and compares it to that of the conventional sequential algorithm.