ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Dean Wang, Sicong Xiao
Nuclear Science and Engineering | Volume 190 | Number 1 | April 2018 | Pages 45-55
Technical Paper | doi.org/10.1080/00295639.2017.1417347
Articles are hosted by Taylor and Francis Online.
In this paper, we propose a new prolongation method to replace the conventional flat flux ratio–based scaling approach of coarse-mesh finite difference (CMFD) for updating the flux. The new prolongation method employs a linear interpolation of the scalar flux differences at the coarse-mesh cell edges between the neutron transport and CMFD calculations. This linear prolongation scheme, called lpCMFD, can greatly improve the stability of CMFD, particularly for problems with large optical thickness. A detailed convergence study of lpCMFD based on Fourier analysis and numerical testing shows that lpCMFD is unconditionally stable and effective for a wide range of optical thicknesses.