ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Report: New recommendations for nuclear waste
Today, a bipartisan group of experts including energy consultant Lake Barrett and former NRC chair Allison Macfarlane have published a report titled The Path Forward for Nuclear Waste in the U.S.
The report recommends a new solution for managing domestic nuclear waste—one that centers around the foundation of an independent corporation led by reactor owners. Responsibility for waste management transport, storage, and disposal would be managed by this corporation rather than the Department of Energy.
Sijun Zhang, Xiang Zhao, Zhi Yang
Nuclear Science and Engineering | Volume 189 | Number 2 | February 2018 | Pages 135-151
Technical Paper | doi.org/10.1080/00295639.2017.1388090
Articles are hosted by Taylor and Francis Online.
This paper presents computational fluid dynamics (CFD) gas flow simulations within a segment of the pebble bed core. The realistic packing structure in an entire pebble bed reactor (PBR) is produced by a means of discrete element method. The packing structure in the segment of the PBR core is then obtained. The gas flow through the voids formed by the packed pebbles is computed by CFD. It is found that the packing structure of pebbles in the PBR is crucial to CFD simulation results. On the other hand, in our numerical simulations both large eddy simulation and Reynolds-Averaged Navier-Stokes models are employed to study the effects of different turbulence models on gas flow field and relevant heat transfer. The calculations indicate the complex flow structure within the voids among the pebbles, which play the key role in heat transfer predictions.