ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
B. Hoop (ret.), S. M. Grimes, M. Drosg
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 102-107
Technical Note | doi.org/10.1080/00295639.2017.1332892
Articles are hosted by Taylor and Francis Online.
A method is described to estimate deuteron-on-deuterium breakup neutron distributions at 0 deg using deuteron bombardment of 3He. Breakup neutron distributions are modeled with the product of a Fermi-Dirac distribution and a cumulative logistic distribution function. Four measured breakup neutron distributions from 6.15- to 12.0-MeV deuterons on 3He are compared with 13 measured distributions from 6.83- to 11.03-MeV deuterons on deuterium. Model parameters that describe d-3He neutron distributions are used to estimate neutron distributions from 6- to 12-MeV deuterons on deuterium.