ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
K. S. Kim, L. F. Nakae, M. K. Prasad, N. J. Snyderman, J. M. Verbeke
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 57-84
Technical Paper | doi.org/10.1080/00295639.2017.1340691
Articles are hosted by Taylor and Francis Online.
Fast nanosecond timescale neutron and gamma-ray counting can be performed with a (liquid) scintillator array. Fission chains in metal evolve over a timescale of tens of nanoseconds. If the metal is surrounded by moderator, neutrons leaking from the metal can thermalize and diffuse in the moderator. With finite probability, the diffusing neutrons can return to the metal and restart the fast fission chain. The timescale for this restart process is microseconds. A theory describing time evolving fission chains for metal surrounded by moderator, including this restart process, is presented. This theory is sufficiently simple for it to be implemented for real-time analysis.