ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Cyrille De Saint Jean, Gilles Noguere, Benoit Habert, Bertrand Iooss
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 363-370
Technical Paper | doi.org/10.13182/NSE161-363
Articles are hosted by Taylor and Francis Online.
The evaluation of neutron cross sections in the low energy range (electron volt, mega-electron-volt) is based on formal nuclear models having different types of parameters. Some of them may be fitted to reproduce experimental datasets giving rise to an adjusted covariance matrix. In this paper, a Monte Carlo method is presented to properly consider the influence of the remaining parameters, having a priori uncertainties, on the fitted parameters covariances. This method is based on an exact mathematical description using conditional probabilities. To explain the key points of the methodology, an academic example of average parameters evaluation in the unresolved resonance range is presented using Hauser-Feshbach model calculations.