ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
HyeongKae Park, Cassiano R. E. de Oliveira
Nuclear Science and Engineering | Volume 161 | Number 2 | February 2009 | Pages 216-234
Technical Paper | doi.org/10.13182/NSE161-216
Articles are hosted by Taylor and Francis Online.
This paper describes the development of a coupled space-angle a posteriori error analysis and adaptive method for radiation transport calculations based on the second-order, even-parity form of the transport equation discretized by a variational finite element-spherical harmonics method (FE-PN). Rigorous a posteriori error estimates for the global L2 norm in the even-parity angular flux are derived by utilizing duality arguments. Separate error components for the spatial and angular discretizations are obtained by the adaptive algorithm by first seeking convergence in the spatial variable and then by projecting the spatially converged solution onto the higher-order PN equation to estimate the angular truncation error. The validity of the developed coupled space-angle adaptive refinement strategy is assessed by comparing the developed error indicator with the true error for representative problems in one and two dimensions. The method of manufactured solutions and alternative transport solution methods are used to provide the true error. Comparisons indicate that the space-angle adaptivity framework is capable of guiding the FE-PN method toward the true solution.