ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Yinlu Han, Yue Zhang, Hairui Guo
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 90-110
Technical Paper | doi.org/10.13182/NSE161-90
Articles are hosted by Taylor and Francis Online.
All cross sections of neutron-induced reactions, angular distributions, energy spectra and double-differential cross sections are consistently calculated and analyzed for 54,56,57,58,natFe at incident neutron energies below 200 MeV based on the nuclear theoretical models, which are the optical model, preequilibrium and equilibrium reaction theories, and the distorted wave Born approximation theory. Theoretical calculated results are compared with existing experimental data and the evaluated results in ENDF/B-VII and JENDL-3. The optical model potential parameters are obtained according to the experimental data of total and nonelastic-scattering cross sections, and elastic-scattering angular distributions.