ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hairui Guo, Yongli Xu, Yinlu Han, Qingbiao Shen, Tao Ye, Weili Sun
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 156-167
Technical Paper | doi.org/10.1080/00295639.2016.1273008
Articles are hosted by Taylor and Francis Online.
A set of optical model potential parameters for the n+51V reaction is obtained based on the experimental data of the total cross section, elastic scattering cross section, and elastic scattering angular distribution at incident energies up to 300 MeV. All cross sections, angular distributions, energy spectra, and double-differential cross sections for the n+51V reaction are consistently calculated and analyzed at incident neutron energies below 250 MeV. The theoretical nuclear models including the optical model, distorted wave Born approximation theory, Hauser-Feshbach theory, evaporation model, exciton model, and intranuclear cascade model are used in the analysis. The calculated results are compared with the experimental data and the evaluated results in ENDF/B-VII.1 and JENDL-4.