ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Hairui Guo, Yongli Xu, Yinlu Han, Qingbiao Shen, Tao Ye, Weili Sun
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 156-167
Technical Paper | doi.org/10.1080/00295639.2016.1273008
Articles are hosted by Taylor and Francis Online.
A set of optical model potential parameters for the n+51V reaction is obtained based on the experimental data of the total cross section, elastic scattering cross section, and elastic scattering angular distribution at incident energies up to 300 MeV. All cross sections, angular distributions, energy spectra, and double-differential cross sections for the n+51V reaction are consistently calculated and analyzed at incident neutron energies below 250 MeV. The theoretical nuclear models including the optical model, distorted wave Born approximation theory, Hauser-Feshbach theory, evaporation model, exciton model, and intranuclear cascade model are used in the analysis. The calculated results are compared with the experimental data and the evaluated results in ENDF/B-VII.1 and JENDL-4.