ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Tengfei Zhang, E. E. Lewis, M. A. Smith, W. S. Yang, Hongchun Wu
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 120-133
Technical Paper | doi.org/10.1080/00295639.2016.1273023
Articles are hosted by Taylor and Francis Online.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method of characteristics (MOC)–based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (PN) on the axial interfaces. The x-y surfaces are treated with high-order PN combined with quasi-reflected interface conditions. The method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.