ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
Akio Yamamoto, Akinori Giho, Yuki Kato, Tomohiro Endo
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 1-22
Technical Paper | doi.org/10.1080/00295639.2016.1273002
Articles are hosted by Taylor and Francis Online.
A heterogeneous transport solver in three-dimensional (3-D) geometry, GENESIS, is developed incorporating recent developments in the method of characteristics (MOC) in 3-D geometry. The Legendre Polynomial Expansion of Angular Flux (LEAF) method is implemented in the GENESIS code, in which neutron transport is calculated in two-dimensional (2-D) characteristics planes rather than in one-dimensional characteristics lines adopted in the conventional approach of 3-D MOC. Unlike the planar MOC method that combines 2-D MOC calculations through axial leakages, the GENESIS code explicitly considers angular and spatial dependence of outgoing and incoming angular fluxes between axial planes. Thus, the GENESIS code eliminates a crucial approximation used in the planar MOC method: No approximation is used for axial leakage treatment. The GENESIS code can handle flexible shapes of objects in rectangular or hexagonal geometry. A two-level, multigroup generalized coarse mesh rebalance acceleration method is adopted for efficient convergence of neutron transport calculation. Performance of the GENESIS code is verified through various benchmark calculations. The calculation results indicate the fidelity of the GENESIS code based on the LEAF method.