ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Ding She, Zhihong Liu, Lei Shi
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 351-360
Technical Paper | doi.org/10.1080/00295639.2016.1272363
Articles are hosted by Taylor and Francis Online.
Dispersion fuel is used in high-temperature reactors (HTRs) and some other advanced reactors. It contains a stochastic mixture of microsphere fuel grains or burnable poison grains embedded in a matrix material, which leads to the so-called double heterogeneity problem in the neutron transport calculation. This work investigates an equivalent homogenization method to deal with the stochastic media. In this method, the stochastic media are transformed to a homogenized material by introducing spatial self-shielding factors and preserving first-collision probabilities. A transmission model is proposed to calculate the first-collision probabilities and the self-shielding factors. In addition, the method is extended to treat the stochastic media with multitype grains. The applicability and correction techniques for the proposed method are discussed. The proposed method has been implemented in a lattice physics code named XPZ for HTRs. Numerical results are presented for typical HTR fuel pebbles and are validated against Monte Carlo solutions. It is concluded that the proposed equivalent homogenization method is promising for treating the double-heterogeneity problem and can be conveniently implemented in existing lattice physics codes.