ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Travis J. Trahan, Edward W. Larsen
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 1-35
Technical Paper | doi.org/10.13182/NSE16-27
Articles are hosted by Taylor and Francis Online.
In this work, we derive and test variational discontinuity factors (DFs) for the asymptotic homogenized diffusion equation. We begin with a functional for optimally estimating the reactor multiplication factor, then introduce asymptotic expressions for the forward and adjoint angular fluxes, and finally require that all first-order error terms vanish. In this way, the reactor multiplication factor can be calculated with second-order error. The analysis leads to (1) an alternate derivation of the asymptotic homogenized diffusion equation, (2) variational boundary conditions for large periodic systems, and (3) variational DFs to be applied between adjacent periodic regions (e.g., fuel assemblies). Numerical tests show that applying the variational DFs to the asymptotic homogenized diffusion equation yields the most accurate estimates of the reactor multiplication factor compared to other DFs for a wide range of problems. However, the resulting assembly powers are less accurate than those obtained using other DFs for many realistic problems.