ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Randal S. Baker
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 107-116
Technical Paper | doi.org/10.13182/NSE15-124
Articles are hosted by Taylor and Francis Online.
Discrete ordinates transport packages from the Los Alamos National Laboratory are required to perform large computationally intensive time-dependent calculations on massively parallel architectures, where even a single such calculation may need many months to complete. While Koch-Baker-Alcouffe (KBA) methods scale well to very large numbers of compute nodes, we are limited by practical constraints on the number of such nodes we can actually apply to any given calculation. Instead, this paper describes a modified KBA algorithm that allows realization of the reductions in solution time offered by both the current and future architectural changes within a compute node.