ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. T. Farmer, R. Bunt, M. Corradini, P. Ellison, M. Francis, J. Gabor, R. Gauntt, C. Henry, R. Linthicum, W. Luangdilok, R. Lutz, C. Paik, M. Plys, C. Rabiti, J. Rempe, K. Robb, R. Wachowiak
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE16-13
Articles are hosted by Taylor and Francis Online.
The reactor accidents at Fukushima Daiichi have rekindled interest in light water reactor (LWR) severe accident phenomenology. Postevent analyses have identified several areas that may warrant additional research and development (R&D) to reduce modeling uncertainties and assist industry in the development of mitigation strategies and in the refinement of severe accident management guidelines to both prevent significant core damage given a beyond-design-basis event and mitigate source term release if core damage does occur. On these bases, a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies was completed with the goal of identifying any data and/or knowledge gaps that may exist given the current state of LWR severe accident research and augmented by insights gained from recent analyses of the Fukushima Daiichi accident. The ultimate benefit of this activity is that the results can be used as a basis for refining research plans to address key knowledge gaps in severe accident phenomenology that affect reactor safety and that are not being directly addressed by the nuclear industry or the U.S. Nuclear Regulatory Commission. As a result of this study, 13 gaps were identified in the areas of severe accident–tolerant components and accident modeling. The results clustered in three main areas: (1) modeling and analysis of in-vessel melt progression phenomena, (2) emergency core cooling system equipment performance under beyond-design-basis accident conditions, and (3) ex-vessel debris coolability and core-concrete interaction behavior relevant to accident management actions. This paper provides a high-level summary of the methodology used for the evaluation, the identified gaps, and, finally, the appropriate R&D that may be completed to address the gaps.