ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
M. T. Farmer, R. Bunt, M. Corradini, P. Ellison, M. Francis, J. Gabor, R. Gauntt, C. Henry, R. Linthicum, W. Luangdilok, R. Lutz, C. Paik, M. Plys, C. Rabiti, J. Rempe, K. Robb, R. Wachowiak
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE16-13
Articles are hosted by Taylor and Francis Online.
The reactor accidents at Fukushima Daiichi have rekindled interest in light water reactor (LWR) severe accident phenomenology. Postevent analyses have identified several areas that may warrant additional research and development (R&D) to reduce modeling uncertainties and assist industry in the development of mitigation strategies and in the refinement of severe accident management guidelines to both prevent significant core damage given a beyond-design-basis event and mitigate source term release if core damage does occur. On these bases, a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies was completed with the goal of identifying any data and/or knowledge gaps that may exist given the current state of LWR severe accident research and augmented by insights gained from recent analyses of the Fukushima Daiichi accident. The ultimate benefit of this activity is that the results can be used as a basis for refining research plans to address key knowledge gaps in severe accident phenomenology that affect reactor safety and that are not being directly addressed by the nuclear industry or the U.S. Nuclear Regulatory Commission. As a result of this study, 13 gaps were identified in the areas of severe accident–tolerant components and accident modeling. The results clustered in three main areas: (1) modeling and analysis of in-vessel melt progression phenomena, (2) emergency core cooling system equipment performance under beyond-design-basis accident conditions, and (3) ex-vessel debris coolability and core-concrete interaction behavior relevant to accident management actions. This paper provides a high-level summary of the methodology used for the evaluation, the identified gaps, and, finally, the appropriate R&D that may be completed to address the gaps.