ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
M. T. Farmer, R. Bunt, M. Corradini, P. Ellison, M. Francis, J. Gabor, R. Gauntt, C. Henry, R. Linthicum, W. Luangdilok, R. Lutz, C. Paik, M. Plys, C. Rabiti, J. Rempe, K. Robb, R. Wachowiak
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE16-13
Articles are hosted by Taylor and Francis Online.
The reactor accidents at Fukushima Daiichi have rekindled interest in light water reactor (LWR) severe accident phenomenology. Postevent analyses have identified several areas that may warrant additional research and development (R&D) to reduce modeling uncertainties and assist industry in the development of mitigation strategies and in the refinement of severe accident management guidelines to both prevent significant core damage given a beyond-design-basis event and mitigate source term release if core damage does occur. On these bases, a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies was completed with the goal of identifying any data and/or knowledge gaps that may exist given the current state of LWR severe accident research and augmented by insights gained from recent analyses of the Fukushima Daiichi accident. The ultimate benefit of this activity is that the results can be used as a basis for refining research plans to address key knowledge gaps in severe accident phenomenology that affect reactor safety and that are not being directly addressed by the nuclear industry or the U.S. Nuclear Regulatory Commission. As a result of this study, 13 gaps were identified in the areas of severe accident–tolerant components and accident modeling. The results clustered in three main areas: (1) modeling and analysis of in-vessel melt progression phenomena, (2) emergency core cooling system equipment performance under beyond-design-basis accident conditions, and (3) ex-vessel debris coolability and core-concrete interaction behavior relevant to accident management actions. This paper provides a high-level summary of the methodology used for the evaluation, the identified gaps, and, finally, the appropriate R&D that may be completed to address the gaps.