ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Akio Yamamoto, Tatsuya Sakamoto, Tomohiro Endo
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 168-173
Technical Paper | doi.org/10.13182/NSE16-53
Articles are hosted by Taylor and Francis Online.
Flux-level-fixup (FF) coarse-mesh finite difference (CMFD) (FF-CMFD), which increases numerical stability during nonlinear iterations for the SP3 advanced nodal method, is proposed as an improved CMFD implementation. In contrast to the scalar flux that appeared in the advanced nodal method with diffusion theory, the second flux moment ϕ2 in the SP3 method could take a very small value since it can take both positive and negative values in a node. This is a root cause of inefficiency of the SP3 advanced nodal method when conventional CMFD acceleration is directly applied. In the proposed FF-CMFD method, a constant value is added to the second flux moment ϕ2 to fix up its value to a sufficiently large positive value for stable numerical calculations. The efficiency of the FF-CMFD method is verified through benchmark calculations.