ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Alexis Jinaphanh, Nicolas Leclaire, Bertrand Cochet
Nuclear Science and Engineering | Volume 184 | Number 1 | September 2016 | Pages 53-68
Technical Paper | doi.org/10.13182/NSE16-2
Articles are hosted by Taylor and Francis Online.
A continuous-energy sensitivity coefficient calculation to nuclear data capability has been recently developed in Version 5.C.1 of the MORET Monte Carlo code developed at Institut de Radioprotection et de Sûreté nucléaire (IRSN). The method used for implementation is the differential operator method. In this method, the estimation of the fission source derivatives is replaced by an estimation of the adjoint flux. Both methodology and tallies are described in this paper. The preliminary verification is mainly performed using code-to-code comparisons with the SCALE6.1 and MCNP6.1 software packages. Configurations used for verification are the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) Uncertainty Analyses for Criticality Safety Assessment (UACSA) Expert Group benchmarks, the Jezebel International Criticality Safety Benchmark Evaluation Project (ICSBEP) benchmark, and a configuration from the Matériaux en Interaction et Réflexion Toutes Epaisseurs (MIRTE) French proprietary experimental program. Results show good agreement among the different codes.