ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE announces awards for three university nuclear education outreach programs
The Department of Energy’s Office of Nuclear Energy has announced more than $590,000 in funding awards to help three universities enhance their outreach in nuclear energy education. The awards, which are part of the DOE Nuclear Energy University Program (NEUP) University Reactor Sharing and Outreach Program, are primarily designed to provide students in K-12, vocational schools, and colleges with access to university research reactors in order to increase awareness of nuclear science, engineering, and technology and to foster early interest in nuclear energy-related careers.
James J. Peltz, Dan G. Cacuci
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 305-331
Technical Paper | doi.org/10.13182/NSE15-98
Articles are hosted by Taylor and Francis Online.
This work presents a comprehensive sensitivity analysis of a paradigm dissolver model that has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model consists of eight active compartments in which the time-dependent nonlinear differential equations modeling the physical and chemical processes comprise 16 time-dependent spatially dependent state functions and 635 model parameters related to the model’s equation of state and inflow conditions. The most important response for the dissolver model is the computed nitric acid in the compartment farthest away from the inlet, where measurements are available for comparisons. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed exactly and efficiently using the adjoint sensitivity analysis method for nonlinear systems. The relative importance of the sensitivities in contributing to the uncertainties in the computed model responses is quantified numerically and analyzed in the dissolver’s physics context. The sensitivities computed in this work will be used in a companion paper for uncertainty analysis and predictive modeling, which aims at validating the paradigm dissolver model using the available experimental data and subsequently obtaining best-estimate predicted nominal values for the acid concentrations, with reduced predicted uncertainties, for the longer-term purpose of coupling this dissolver model to other nuclear facilities of interest to nonproliferation objectives.