ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
T. Matsumura
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 407-420
Technical Paper | doi.org/10.13182/NSE15-86
Articles are hosted by Taylor and Francis Online.
The neutron escape probability from a rectangular cell is investigated for the collision probability method. Since the numerical calculation of the escape probability requires multiple integrations, resulting in a long computing time, semianalytical approximation of the multiple integrations is proposed to reduce the computing time. By approximating the result of integration in the z-direction by a polynomial expression divided into ranges, it is possible to perform the integrations in the x- and y-directions analytically. The computing time of the present semianalytical approximation is reduced by one to two orders of magnitude compared with that required for the conventional numerical integration. Moreover, a lookup escape probability table for rectangular cells calculated using the semianalytical approximation enables the calculation of the escape probability for an arbitrary rectangle with a much shorter computing time and practical precision (<0.1% error). In addition, a method of applying the semianalytical approximation and a lookup table to the collision probability calculation for an x-y geometry is discussed.