ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. Drosg
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 143-148
Technical Note | doi.org/10.13182/NSE15-65
Articles are hosted by Taylor and Francis Online.
The continuous neutron spectrum from the t→d+n breakup reaction can best be extracted in the 3H(p,n)3He and 4He(t,n)6Li reactions because of minimum neutron background in both cases. Only for the latter reaction are neutron background spectra also available. These data were measured at 11.88-MeV triton energy at eight angles between 0 and 120 deg. As a test for the validity of the procedure, angle-dependent differential cross sections of 4He(t,n)6Li were extracted and converted to 6Li(n,t)4He at En = 2.32 MeV by detailed balance calculation thus contributing to the R-matrix analysis of the 7Li system. The double-differential and neutron energy integrated cross sections at that energy are given as well as those for the triton breakup of the time-reversed reaction.