ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
F. Chaland, G. Samba
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 417-434
Technical Paper | doi.org/10.13182/NSE15-38
Articles are hosted by Taylor and Francis Online.
To calculate instability flows where radiative transport plays a role, it is mandatory to have one-dimensional (1-D) spherical symmetry. To obtain this 1-D symmetry, a new approach for solving the transport equation in the context of the discrete ordinates method is proposed in two-dimensional cylindrical geometry. Based on a new formulation of the spatial transport term, this method allows us to derive a scheme preserving the 1-D symmetry on an equal-angle zoning mesh. We prove this property at both discrete angle and spatial levels. Numerical results show that the scheme based on our method preserves constant solutions and the 1-D symmetry, and it is consistent of order 1.