ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Shawn A. Campbell, John Palsmeier, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 287-296
Technical Paper | doi.org/10.13182/NSE15-40
Articles are hosted by Taylor and Francis Online.
The nuclear source term is greatly affected by the formation and presence of aerosols in the reactor primary vessel and the containment. In simulations, the aerosol distribution is often assumed spatially homogeneous (well mixed), and there have been relatively few studies of the effects of spatial inhomogeneity on aerosol evolution in nuclear accidents. We have explored here an extension of some of our recent work on the Direct Simulation Monte Carlo (DSMC) method to spatially inhomogeneous aerosol. In doing so, we have also departed from the traditional applications of the DSMC method where the computational domain is divided into fixed cells. We have explored here an alternative, mesh-free method by utilizing a clustering technique. This technique associates particles according to a distance parameter and is commonly used in group theory and machine learning. To benchmark this mesh-free modeling, we have verified the DSMC results against those obtained from the use of the cell balanced sectional technique for a spherical geometry where both coagulation and diffusion take place.