ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC OKs I&C upgrade for Limerick
The Nuclear Regulatory Commission has amended the operating licenses of the two boiling water reactors at Constellation Energy's Limerick Generating Station (now known as Limerick Clean Energy Center), giving the company the green light to replace the units' analog safety-related instrumentation and controls systems with a state-of-the-art digital system.
Daniel B. Fromowitz, Gary B. Zeigler
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 166-180
Technical Paper | doi.org/10.13182/NSE14-49
Articles are hosted by Taylor and Francis Online.
Using two different methods, angular quadrature sets are developed with greater than about 1000 angles per octant to reduce ray effects in three-dimensional (3-D), discrete ordinates radiation transport calculations with large air or void regions. Quadrature sets from both methods are evaluated in two distinct 3-D models sensitive to quadrature details and are shown to behave reasonably well. The first method is a previously described method that is examined here in 3-D. The second method produces quadrature sets that have quadrature directions approximately evenly spaced over the entire surface of the unit sphere.