ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Glenn A. Roth, Fatih Aydogan
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 71-82
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE14-149
Articles are hosted by Taylor and Francis Online.
The RELAP5-3D code is used to analyze nuclear reactor systems during steady-state and transient operations. Reactor transients that result in significant two-phase flow conditions and phase change, such as reflood scenarios, loss-of-coolant accidents, and others, can tax the current capabilities of the code to model the flow fields. Current codes, such as RELAP5-3D, RELAP-7, and TRACE, have mass, momentum, and energy governing equations for only two fields (liquid and vapor). The representation of two-phase flow phenomena is improved by increasing the number of fields. Therefore, governing equations based on six fields (liquid, vapor, small bubble, large bubble, small droplet, and large droplet) are derived in this paper for implementation in RELAP5-3D.