ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Pengcheng Li, Matthew T. Bernards
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 310-317
Technical Paper | doi.org/10.13182/NSE15-2
Articles are hosted by Taylor and Francis Online.
Radioactive iodine gas is a problematic species in multiple nuclear energy–related applications. Therefore, it is highly desirable to develop an adsorbent that has a high capacity for iodine. In this investigation, the iodine adsorption capacity of high-purity magnesium oxide was investigated as a function of the calcination conditions. Differences in the magnesia substrates were characterized by scanning electron microscopy and X-ray diffraction, and the iodine adsorption capacity was determined using thermogravimetric analysis. The results indicate that the calcination temperature and time have a significant impact on the adsorption capacity, with longer times and higher temperatures having a negative impact. However, under the optimal calcination conditions identified in this study (550°C for 20 min), the high-purity magnesia was found to have an adsorption capacity >300 mg of iodine per gram of sorbent. This suggests that magnesia holds promise for nuclear applications where iodine gas adsorption would be beneficial.