ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Pengcheng Li, Matthew T. Bernards
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 310-317
Technical Paper | doi.org/10.13182/NSE15-2
Articles are hosted by Taylor and Francis Online.
Radioactive iodine gas is a problematic species in multiple nuclear energy–related applications. Therefore, it is highly desirable to develop an adsorbent that has a high capacity for iodine. In this investigation, the iodine adsorption capacity of high-purity magnesium oxide was investigated as a function of the calcination conditions. Differences in the magnesia substrates were characterized by scanning electron microscopy and X-ray diffraction, and the iodine adsorption capacity was determined using thermogravimetric analysis. The results indicate that the calcination temperature and time have a significant impact on the adsorption capacity, with longer times and higher temperatures having a negative impact. However, under the optimal calcination conditions identified in this study (550°C for 20 min), the high-purity magnesia was found to have an adsorption capacity >300 mg of iodine per gram of sorbent. This suggests that magnesia holds promise for nuclear applications where iodine gas adsorption would be beneficial.