ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Seungsu Yuk, Nam Zin Cho
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE14-88
Articles are hosted by Taylor and Francis Online.
In this paper, we present two novel approaches to reactor core analysis: (1) whole-core fine-group deterministic transport calculations are accelerated by a partial-current-based coarse-mesh finite-difference (p-CMFD) method, and (2) a whole-core domain is decomposed into nonoverlapping local problems, with local problem transport solutions then embedded within the p-CMFD methodology in a two-level iterative scheme to provide a whole-core transport solution. To solve three-dimensional (3-D) reactor problems, both approaches use the two-dimensional/one-dimensional (2-D/1-D) fusion method as a solution kernel, which employs a 2-D method of characteristics in the radial direction and a 1-D SN-like method in the axial direction. A refinement sensitivity study of a 3-D boiling water reactor assembly problem shows the stability and accuracy of the 2-D/1-D fusion method. We report the results of these two approaches as applied to three whole-core configurations of the C5G7 OECD/NEA 3-D benchmark problem and to a modified C5G7 benchmark problem with explicitly modeled cladding.