ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Liu Xiaobo, Peng Xianjue, Lei Jiarong, Fan Xiaoqiang, Du Jinfeng, Gao Hui
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 96-104
Technical Paper | doi.org/10.13182/NSE14-100
Articles are hosted by Taylor and Francis Online.
Based on a new experimental method implemented for validating neutron initiation probability, a set of burst initiation probability experiments (128 bursts) that were initiated by simultaneously injecting pulsed neutrons just as the reactor achieves the prompt supercritical state of 0.042 $ has been carried out at the CFBR-II (Chinese Fast Burst Reactor–II). The experimental configuration and procedures remained the same throughout the entire set of experiments. Based on the measured data, each burst was tallied by judging whether or not the burst was initiated by the pulsed neutrons. With the injection of pulsed neutrons (the equivalent strength of the neutrons is 1230), the tallies of the burst initiated by pulsed neutrons were 44, and hence, the experimental result of initiation probability is 0.344, which is 27% more than the theoretical calculation result of 0.271. Some factors that influence the experimental results are discussed. The discrepancy is attributed mainly to neutrons that are scattered and returned from the environment during the injection of pulsed neutrons and the statistical deviation.