ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
W. R. Marcum, P. Y. Byfield, S. R. Reese
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 123-140
Technical Paper | doi.org/10.13182/NSE14-93
Articles are hosted by Taylor and Francis Online.
Oregon State University (OSU) has developed and patented a technology that produces 99Mo within a standard TRIGA reactor core and does not negatively impact safety bases for the operations of such reactor designs. This new technology, referred to as the “molybdenum element,” is intended on being demonstrated within the OSU TRIGA Reactor (OSTR) with figures of merit including 99Mo yield and operation. A comprehensive design and thermal-hydraulic analysis has been conducted to characterize the safety-related traits of the molybdenum element to facilitate a license amendment through the U.S. Nuclear Regulatory Commission to insert such an experiment in the OSTR. This study details the thermal-hydraulic characteristics of the molybdenum element exhibited within the OSTR under the three sets of conditions necessary to demonstrate the element's safety. The study leverages the lumped-parameter code RELAP5-3D Version 2.4.2 for conduct of the primary body of this work. The first condition analyzes the molybdenum element's response under steady-state, full-power operation; the second condition assumes that the inner region of the annular molybdenum element is blocked while remaining at full power; and the last condition considers several loss-of-coolant-accident scenarios. Key thermal-hydraulic parameters that may impact the safety of the OSTR are identified, presented, and discussed herein. The result of this study provides objective evidence through use of RELAP5-3D that the molybdenum element remains in a safe state during the steady and abnormal conditions considered.