ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y.-R. Kang, M. W. Lee, G. N. Kim, T.-I. Ro, Y. Danon, D. Williams, G. Leinweber, R. C. Block, D. P. Barry, M. J. Rapp
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 86-116
Technical Paper | doi.org/10.13182/NSE14-80
Articles are hosted by Taylor and Francis Online.
Neutron capture measurements were performed with the time-of-flight method at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute (RPI) using isotopically enriched gadolinium (Gd) samples (155Gd, 156Gd, 157Gd, 158Gd, and 160Gd). The neutron capture measurements were made at the 25-m flight station with a 16-segment sodium iodide multiplicity detector. After the data were collected and reduced to capture yields, resonance parameters were obtained by a combined fitting of the neutron capture data for five enriched Gd isotopes and one natural Gd sample using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. We observed 2, 169, 96, and 1 new resonances in 154Gd, 155Gd, 157Gd, and 158Gd isotopes, respectively. Resonances in the ENDF/B-VII.0 evaluation that were not observed in the current experiment and could not be traced to a literature reference were removed. This includes 11 resonances from the 156Gd isotope, 1 resonance from 157Gd, 1 resonance from 158Gd, and 6 resonances from the 160Gd isotope. The resulting resonance parameters were used to calculate the capture resonance integrals in the energy region from 0.5 eV to 20 MeV and were compared to calculations obtained when using the resonance parameters from ENDF/B-VII.0 and previous RPI results. The present parameters gave a resonance integral value of 395 ± 2 b, which is ∼0.8% higher and ∼1.7% lower than that obtained with the ENDF/B-VII.0 parameters and with the previous RPI parameters, respectively.