ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Taro Ueki
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 58-68
Technical Paper | doi.org/10.13182/NSE14-54
Articles are hosted by Taylor and Francis Online.
The overlapping batch means method (OBM) has been investigated for robust statistical error estimation of local power tallies in Monte Carlo (MC) reactor core calculation. Originally, a nonoverlapping version was introduced in MC criticality calculation by Gelbard and Prael. However, the issue of batch size optimization was thought of as a lack of robustness. In this work, OBM with asymptotic bias correction was implemented with the batch size of the square root of the number of generations and compared with the orthonormally weighted standardized time series method (OWSTS). Numerical tests were conducted for various positions of the core of a pressurized water reactor. Results obtained indicate that neither OBM nor OWSTS consistently outperforms the other in terms of an overall performance measure incorporating bias and stability. Therefore, OBM with asymptotic bias correction can be an option to statistical error estimation in production MC criticality codes since OWSTS lacks an automated process to determine the number of weighting functions and can output the estimate only at the final generation. It is also shown that OBM with asymptotic bias correction performs equally regardless of the batch size.