ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Risto Vanhanen
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 411-422
Technical Paper | doi.org/10.13182/NSE14-75
Articles are hosted by Taylor and Francis Online.
We propose a novel application of a method to compute the nearest positive semidefinite matrix. When applied to covariance matrices of multigroup nuclear data, the method removes unphysical components of the covariances while preserving the physical components of the original covariance matrix. The result is a mathematically proper covariance matrix.
We show that the method preserves the so-called zero sum rule of covariances of distributions in exact arithmetic. The results also hold for typical cases of finite precision arithmetic. We identify conditions that might damage the zero sum rule.
Rounding can distort the eigenvalues of a symmetric matrix. We give a known bound on how large distortions can occur due to round-off. Consequently, there is a known upper bound on how large negative eigenvalues can be attributed to round-off error. Current evaluations and processing codes do produce larger negative eigenvalues.
Three practical examples are processed and analyzed. We demonstrate that satisfactory results can be achieved.
We discuss briefly the relevance of the method, its properties, and alternative approaches. The method can be used as a part of a quality assurance program and would be a valuable addition to nuclear data processing codes.