ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Risto Vanhanen
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 411-422
Technical Paper | doi.org/10.13182/NSE14-75
Articles are hosted by Taylor and Francis Online.
We propose a novel application of a method to compute the nearest positive semidefinite matrix. When applied to covariance matrices of multigroup nuclear data, the method removes unphysical components of the covariances while preserving the physical components of the original covariance matrix. The result is a mathematically proper covariance matrix.
We show that the method preserves the so-called zero sum rule of covariances of distributions in exact arithmetic. The results also hold for typical cases of finite precision arithmetic. We identify conditions that might damage the zero sum rule.
Rounding can distort the eigenvalues of a symmetric matrix. We give a known bound on how large distortions can occur due to round-off. Consequently, there is a known upper bound on how large negative eigenvalues can be attributed to round-off error. Current evaluations and processing codes do produce larger negative eigenvalues.
Three practical examples are processed and analyzed. We demonstrate that satisfactory results can be achieved.
We discuss briefly the relevance of the method, its properties, and alternative approaches. The method can be used as a part of a quality assurance program and would be a valuable addition to nuclear data processing codes.